Introduction to Real Analysis
This page intentionally left blank
INTRODUCTION TO REAL ANALYSIS
Fourth Edition

Robert G. Bartle
Donald R. Sherbert

University of Illinois, Urbana-Champaign

John Wiley & Sons, Inc.
A TRIBUTE

This edition is dedicated to the memory of Robert G. Bartle, a wonderful friend and colleague of forty years. It has been an immense honor and pleasure to be Bob’s coauthor on the previous editions of this book. I greatly miss his knowledge, his insights, and especially his humor.

November 20, 2010
Urbana, Illinois

Donald R. Sherbert
To Jan, with thanks and love.
The study of real analysis is indispensable for a prospective graduate student of pure or applied mathematics. It also has great value for any student who wishes to go beyond the routine manipulations of formulas because it develops the ability to think deductively, analyze mathematical situations and extend ideas to new contexts. Mathematics has become valuable in many areas, including economics and management science as well as the physical sciences, engineering, and computer science. This book was written to provide an accessible, reasonably paced treatment of the basic concepts and techniques of real analysis for students in these areas. While students will find this book challenging, experience has demonstrated that serious students are fully capable of mastering the material.

The first three editions were very well received and this edition maintains the same spirit and user-friendly approach as earlier editions. Every section has been examined. Some sections have been revised, new examples and exercises have been added, and a new section on the Darboux approach to the integral has been added to Chapter 7. There is more material than can be covered in a semester and instructors will need to make selections and perhaps use certain topics as honors or extra credit projects.

To provide some help for students in analyzing proofs of theorems, there is an appendix on “Logic and Proofs” that discusses topics such as implications, negations, contrapositives, and different types of proofs. However, it is a more useful experience to learn how to construct proofs by first watching and then doing than by reading about techniques of proof.

Results and proofs are given at a medium level of generality. For instance, continuous functions on closed, bounded intervals are studied in detail, but the proofs can be readily adapted to a more general situation. This approach is used to advantage in Chapter 11 where topological concepts are discussed. There are a large number of examples to illustrate the concepts, and extensive lists of exercises to challenge students and to aid them in understanding the significance of the theorems.

Chapter 1 has a brief summary of the notions and notations for sets and functions that will be used. A discussion of Mathematical Induction is given, since inductive proofs arise frequently. There is also a section on finite, countable and infinite sets. This chapter can be used to provide some practice in proofs, or covered quickly, or used as background material and returning later as necessary.

Chapter 2 presents the properties of the real number system. The first two sections deal with Algebraic and Order properties, and the crucial Completeness Property is given in Section 2.3 as the Supremum Property. Its ramifications are discussed throughout the remainder of the chapter.

In Chapter 3, a thorough treatment of sequences is given, along with the associated limit concepts. The material is of the greatest importance. Students find it rather natural though it takes time for them to become accustomed to the use of epsilon. A brief introduction to Infinite Series is given in Section 3.7, with more advanced material presented in Chapter 9.
Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute the heart of the book. The discussion of limits and continuity relies heavily on the use of sequences, and the closely parallel approach of these chapters reinforces the understanding of these essential topics. The fundamental properties of continuous functions on intervals are discussed in Sections 5.3 and 5.4. The notion of a gauge is introduced in Section 5.5 and used to give alternate proofs of these theorems. Monotone functions are discussed in Section 5.6.

The basic theory of the derivative is given in the first part of Chapter 6. This material is standard, except a result of Carathéodory is used to give simpler proofs of the Chain Rule and the Inversion Theorem. The remainder of the chapter consists of applications of the Mean Value Theorem and may be explored as time permits.

In Chapter 7, the Riemann integral is defined in Section 7.1 as a limit of Riemann sums. This has the advantage that it is consistent with the students’ first exposure to the integral in calculus, and since it is not dependent on order properties, it permits immediate generalization to complex- and vector-values functions that students may encounter in later courses. It is also consistent with the generalized Riemann integral that is discussed in Chapter 10. Sections 7.2 and 7.3 develop properties of the integral and establish the Fundamental Theorem of Calculus. The new Section 7.4, added in response to requests from a number of instructors, develops the Darboux approach to the integral in terms of upper and lower integrals, and the connection between the two definitions of the integral is established. Section 7.5 gives a brief discussion of numerical methods of calculating the integral of continuous functions.

Sequences of functions and uniform convergence are discussed in the first two sections of Chapter 8, and the basic transcendental functions are put on a firm foundation in Sections 8.3 and 8.4. Chapter 9 completes the discussion of infinite series that was begun in Section 3.7. Chapters 8 and 9 are intrinsically important, and they also show how the material in the earlier chapters can be applied.

Chapter 10 is a presentation of the generalized Riemann integral (sometimes called the “Henstock-Kurzweil” or the “gauge” integral). It will be new to many readers and they will be amazed that such an apparently minor modification of the definition of the Riemann integral can lead to an integral that is more general than the Lebesgue integral. This relatively new approach to integration theory is both accessible and exciting to anyone who has studied the basic Riemann integral.

Chapter 11 deals with topological concepts. Earlier theorems and proofs are extended to a more abstract setting. For example, the concept of compactness is given proper emphasis and metric spaces are introduced. This chapter will be useful to students continuing on to graduate courses in mathematics.

There are lengthy lists of exercises, some easy and some challenging, and “hints” to many of them are provided to help students get started or to check their answers. More complete solutions of almost every exercise are given in a separate Instructor’s Manual, which is available to teachers upon request to the publisher.

It is a satisfying experience to see how the mathematical maturity of the students increases as they gradually learn to work comfortably with concepts that initially seemed so mysterious. But there is no doubt that a lot of hard work is required on the part of both the students and the teachers.

Brief biographical sketches of some famous mathematicians are included to enrich the historical perspective of the book. Thanks go to Dr. Patrick Muldowney for his photograph of Professors Henstock and Kurzweil, and to John Wiley & Sons for obtaining portraits of the other mathematicians.
Many helpful comments have been received from colleagues who have taught from earlier editions of this book and their remarks and suggestions have been appreciated. I wish to thank them and express the hope that they find this new edition even more helpful than the earlier ones.

November 20, 2010
Urbana, Illinois

Donald R. Sherbert

THE GREEK ALPHABET

A α Alpha N ν Nu
B β Beta Ξ ξ Xi
Γ γ Gamma O \omicron Omicron
Δ δ Delta Π π Pi
\Epsilon ϵ Epsilon \P ρ Rho
\Zeta ζ Zeta Σ σ Sigma
\Eta η Eta \T τ Tau
Θ θ Theta Υ υ Upsilon
\Iota ι Iota Φ φ Phi
\Kappa κ Kappa χ Chi
Λ λ Lambda Ψ ψ Psi
\Mu μ Mu Ω ω Omega
This page intentionally left blank
CHAPTER 1 PRELIMINARIES 1
1.1 Sets and Functions 1
1.2 Mathematical Induction 12
1.3 Finite and Infinite Sets 16

CHAPTER 2 THE REAL NUMBERS 23
2.1 The Algebraic and Order Properties of \mathbb{R} 23
2.2 Absolute Value and the Real Line 32
2.3 The Completeness Property of \mathbb{R} 36
2.4 Applications of the Supremum Property 40
2.5 Intervals 46

CHAPTER 3 SEQUENCES AND SERIES 54
3.1 Sequences and Their Limits 55
3.2 Limit Theorems 63
3.3 Monotone Sequences 70
3.4 Subsequences and the Bolzano-Weierstrass Theorem 78
3.5 The Cauchy Criterion 85
3.6 Properly Divergent Sequences 91
3.7 Introduction to Infinite Series 94

CHAPTER 4 LIMITS 102
4.1 Limits of Functions 103
4.2 Limit Theorems 111
4.3 Some Extensions of the Limit Concept 116

CHAPTER 5 CONTINUOUS FUNCTIONS 124
5.1 Continuous Functions 125
5.2 Combinations of Continuous Functions 130
5.3 Continuous Functions on Intervals 134
5.4 Uniform Continuity 141
5.5 Continuity and Gauges 149
5.6 Monotone and Inverse Functions 153
CHAPTER 6 DIFFERENTIATION 161
 6.1 The Derivative 162
 6.2 The Mean Value Theorem 172
 6.3 L’Hospital’s Rules 180
 6.4 Taylor’s Theorem 188

CHAPTER 7 THE RIEMANN INTEGRAL 198
 7.1 Riemann Integral 199
 7.2 Riemann Integrable Functions 208
 7.3 The Fundamental Theorem 216
 7.4 The Darboux Integral 225
 7.5 Approximate Integration 233

CHAPTER 8 SEQUENCES OF FUNCTIONS 241
 8.1 Pointwise and Uniform Convergence 241
 8.2 Interchange of Limits 247
 8.3 The Exponential and Logarithmic Functions 253
 8.4 The Trigonometric Functions 260

CHAPTER 9 INFINITE SERIES 267
 9.1 Absolute Convergence 267
 9.2 Tests for Absolute Convergence 270
 9.3 Tests for Nonabsolute Convergence 277
 9.4 Series of Functions 281

CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL 288
 10.1 Definition and Main Properties 289
 10.2 Improper and Lebesgue Integrals 302
 10.3 Infinite Intervals 308
 10.4 Convergence Theorems 315

CHAPTER 11 A GLIMPSE INTO TOPOLOGY 326
 11.1 Open and Closed Sets in \(\mathbb{R} \) 326
 11.2 Compact Sets 333
 11.3 Continuous Functions 337
 11.4 Metric Spaces 341

APPENDIX A LOGIC AND PROOFS 348

APPENDIX B FINITE AND COUNTABLE SETS 357
APPENDIX C THE RIEMANN AND LEBESGUE CRITERIA 360

APPENDIX D APPROXIMATE INTEGRATION 364

APPENDIX E TWO EXAMPLES 367

REFERENCES 370

PHOTO CREDITS 371

HINTS FOR SELECTED EXERCISES 372

INDEX 395