Principles of Distributed Database Systems
To my family
and my parents
M.T.Ö.

To Esther, my daughters Anna, Juliette and Sarah, and my parents
P.V.
It has been almost twenty years since the first edition of this book appeared, and ten years since we released the second edition. As one can imagine, in a fast changing area such as this, there have been significant changes in the intervening period. Distributed data management went from a potentially significant technology to one that is common place. The advent of the Internet and the World Wide Web have certainly changed the way we typically look at distribution. The emergence in recent years of different forms of distributed computing, exemplified by data streams and cloud computing, has regenerated interest in distributed data management. Thus, it was time for a major revision of the material.

We started to work on this edition five years ago, and it has taken quite a while to complete the work. The end result, however, is a book that has been heavily revised – while we maintained and updated the core chapters, we have also added new ones. The major changes are the following:

1. Database integration and querying is now treated in much more detail, reflecting the attention these topics have received in the community in the past decade. Chapter 4 focuses on the integration process, while Chapter 9 discusses querying over multidatabase systems.

2. The previous editions had only brief discussion of data replication protocols. This topic is now covered in a separate chapter (Chapter 13) where we provide an in-depth discussion of the protocols and how they can be integrated with transaction management.

3. Peer-to-peer data management is discussed in depth in Chapter 16. These systems have become an important and interesting architectural alternative to classical distributed database systems. Although the early distributed database systems architectures followed the peer-to-peer paradigm, the modern incarnation of these systems have fundamentally different characteristics, so they deserve in-depth discussion in a chapter of their own.

4. Web data management is discussed in Chapter 17. This is a difficult topic to cover since there is no unifying framework. We discuss various aspects
of the topic ranging from web models to search engines to distributed XML processing.

5. Earlier editions contained a chapter where we discussed “recent issues” at the
time. In this edition, we again have a similar chapter (Chapter 18) where we
cover stream data management and cloud computing. These topics are still
in a flux and are subjects of considerable ongoing research. We highlight the
issues and the potential research directions.

The resulting manuscript strikes a balance between our two objectives, namely to
address new and emerging issues, and maintain the main characteristics of the book
in addressing the principles of distributed data management.

The organization of the book can be divided into two major parts. The first part
covers the fundamental principles of distributed data management and consist of
Chapters 1 to 14. Chapter 2 in this part covers the background and can be skipped if
the students already have sufficient knowledge of the relational database concepts
and the computer network technology. The only part of this chapter that is essential
is Example 2.3, which introduces the running example that we use throughout much
of the book. The second part covers more advanced topics and includes Chapters 15 –
18. What one covers in a course depends very much on the duration and the course
objectives. If the course aims to discuss the fundamental techniques, then it might
cover Chapters 1, 3, 5, 6–8, 10–12. An extended coverage would include, in addition
to the above, Chapters 4, 9, and 13. Courses that have time to cover more material
can selectively pick one or more of Chapters 15 – 18 from the second part.

Many colleagues have assisted with this edition of the book. S. Keshav (Uni-
versity of Waterloo) has read and provided many suggestions to update the sections
on computer networks. Renée Miller (University of Toronto) and Erhard Rahm
(University of Leipzig) read an early draft of Chapter 4 and provided many com-
ments, Alon Halevy (Google) answered a number of questions about this chapter
and provided a draft copy of his upcoming book on this topic as well as reading
and providing feedback on Chapter 9, Avigdor Gal (Technion) also reviewed and
critiqued this chapter very thoroughly. Matthias Jarke and Xiang Li (University of
Aachen), Gottfried Vossen (University of Muenster), Erhard Rahm and Andreas
Thor (University of Leipzig) contributed exercises to this chapter. Hubert Naacke
(University of Paris 6) contributed to the section on heterogeneous cost modeling
and Fabio Porto (LNCC, Petropolis) to the section on adaptive query processing of
Chapter 9. Data replication (Chapter 13) could not have been written without the
assistance of Gustavo Alonso (ETH Zürich) and Bettina Kemme (McGill University).
Tamer spent four months in Spring 2006 visiting Gustavo where work on this chapter
began and involved many long discussions. Bettina read multiple iterations of this
chapter over the next one year criticizing everything and pointing out better ways of
explaining the material. Esther Pacitti (University of Montpellier) also contributed
to this chapter, both by reviewing it and by providing background material; she also
contributed to the section on replication in database clusters in Chapter 14. Ricardo
Jimenez-Peris also contributed to that chapter in the section on fault-tolerance in
database clusters. Khuzaima Daudjee (University of Waterloo) read and provided
comments on this chapter as well. Chapter 15 on Distributed Object Database Management was reviewed by Serge Abiteboul (INRIA), who provided important critique of the material and suggestions for its improvement. Peer-to-peer data management (Chapter 16) owes a lot to discussions with Beng Chin Ooi (National University of Singapore) during the four months Tamer was visiting NUS in the fall of 2006. The section of Chapter 16 on query processing in P2P systems uses material from the PhD work of Reza Akbarinia (INRIA) and Wenceslao Palma (PUC-Valparaiso, Chile) while the section on replication uses material from the PhD work of Vidal Martins (PUCPR, Curitiba). The distributed XML processing section of Chapter 17 uses material from the PhD work of Ning Zhang (Facebook) and Patrick Kling at the University of Waterloo, and Ying Zhang at CWI. All three of them also read the material and provided significant feedback. Victor Muntés i Mulero (Universitat Politècnica de Catalunya) contributed to the exercises in that chapter. Özgür Ulusoy (Bilkent University) provided comments and corrections on Chapters 16 and 17. Data stream management section of Chapter 18 draws from the PhD work of Lukasz Golab (AT&T Labs-Research), and Yingying Tao at the University of Waterloo. Walid Aref (Purdue University) and Avigdor Gal (Technion) used the draft of the book in their courses, which was very helpful in debugging certain parts. We thank them, as well as many colleagues who had helped out with the first two editions, for all their assistance. We have not always followed their advice, and, needless to say, the resulting problems and errors are ours. Students in two courses at the University of Waterloo (Web Data Management in Winter 2005, and Internet-Scale Data Distribution in Fall 2005) wrote surveys as part of their coursework that were very helpful in structuring some chapters. Tamer taught courses at ETH Zürich (PDDBS – Parallel and Distributed Databases in Spring 2006) and at NUS (CS5225 – Parallel and Distributed Database Systems in Fall 2010) using parts of this edition. We thank students in all these courses for their contributions and their patience as they had to deal with chapters that were works-in-progress – the material got cleaned considerably as a result of these teaching experiences.

You will note that the publisher of the third edition of the book is different than the first two editions. Pearson, our previous publisher, decided not to be involved with the third edition. Springer subsequently showed considerable interest in the book. We would like to thank Susan Lagerstrom-Fife and Jennifer Evans of Springer for their lightning-fast decision to publish the book, and Jennifer Mauer for a ton of hand-holding during the conversion process. We would also like to thank Tracy Dunkleberger of Pearson who shepherded the reversal of the copyright to us without delay.

As in earlier editions, we will have presentation slides that can be used to teach from the book as well as solutions to most of the exercises. These will be available from Springer to instructors who adopt the book and there will be a link to them from the book’s site at springer.com.

Finally, we would be very interested to hear your comments and suggestions regarding the material. We welcome any feedback, but we would particularly like to receive feedback on the following aspects:
1. any errors that may have remained despite our best efforts (although we hope there are not many);
2. any topics that should no longer be included and any topics that should be added or expanded; and
3. any exercises that you may have designed that you would like to be included in the book.

M. Tamer Özsu (Tamer.Ozsu@uwaterloo.ca)
Patrick Valduriez (Patrick.Valduriez@inria.fr)
November 2010
Contents

1. **Introduction** .. 1
 1.1 Distributed Data Processing .. 2
 1.2 What is a Distributed Database System? 3
 1.3 Data Delivery Alternatives ... 5
 1.4 Promises of DDBSs ... 7
 1.4.1 Transparent Management of Distributed and Replicated Data 7
 1.4.2 Reliability Through Distributed Transactions 12
 1.4.3 Improved Performance .. 14
 1.4.4 Easier System Expansion ... 15
 1.5 Complications Introduced by Distribution 16
 1.6 Design Issues ... 16
 1.6.1 Distributed Database Design ... 17
 1.6.2 Distributed Directory Management 17
 1.6.3 Distributed Query Processing 17
 1.6.4 Distributed Concurrency Control 18
 1.6.5 Distributed Deadlock Management 18
 1.6.6 Reliability of Distributed DBMS 18
 1.6.7 Replication ... 19
 1.6.8 Relationship among Problems 19
 1.6.9 Additional Issues .. 20
 1.7 Distributed DBMS Architecture ... 21
 1.7.1 ANSI/SPARC Architecture ... 21
 1.7.2 A Generic Centralized DBMS Architecture 23
 1.7.3 Architectural Models for Distributed DBMSs 25
 1.7.4 Autonomy ... 25
 1.7.5 Distribution ... 27
 1.7.6 Heterogeneity .. 27
 1.7.7 Architectural Alternatives ... 28
 1.7.8 Client/Server Systems .. 28
 1.7.9 Peer-to-Peer Systems .. 32
 1.7.10 Multidatabase System Architecture 35
2 Background .. 41
2.1 Overview of Relational DBMS 41
 2.1.1 Relational Database Concepts 41
 2.1.2 Normalization .. 43
 2.1.3 Relational Data Languages 45
2.2 Review of Computer Networks 58
 2.2.1 Types of Networks 60
 2.2.2 Communication Schemes 63
 2.2.3 Data Communication Concepts 65
 2.2.4 Communication Protocols 67
2.3 Bibliographic Notes 70

3 Distributed Database Design 71
3.1 Top-Down Design Process 73
3.2 Distribution Design Issues 75
 3.2.1 Reasons for Fragmentation 75
 3.2.2 Fragmentation Alternatives 76
 3.2.3 Degree of Fragmentation 77
 3.2.4 Correctness Rules of Fragmentation 79
 3.2.5 Allocation Alternatives 79
 3.2.6 Information Requirements 80
3.3 Fragmentation .. 81
 3.3.1 Horizontal Fragmentation 81
 3.3.2 Vertical Fragmentation 98
 3.3.3 Hybrid Fragmentation 112
3.4 Allocation .. 113
 3.4.1 Allocation Problem 114
 3.4.2 Information Requirements 116
 3.4.3 Allocation Model 118
 3.4.4 Solution Methods 121
3.5 Data Directory .. 122
3.6 Conclusion ... 123
3.7 Bibliographic Notes 125

4 Database Integration ... 131
4.1 Bottom-Up Design Methodology 133
4.2 Schema Matching .. 137
 4.2.1 Schema Heterogeneity 140
 4.2.2 Linguistic Matching Approaches 141
 4.2.3 Constraint-based Matching Approaches 143
 4.2.4 Learning-based Matching 145
 4.2.5 Combined Matching Approaches 146
4.3 Schema Integration ... 147
4.4 Schema Mapping ... 149
 4.4.1 Mapping Creation 150
 4.4.2 Mapping Maintenance 155
4.5 Data Cleaning .. 157
4.6 Conclusion .. 159
4.7 Bibliographic Notes .. 160

5 Data and Access Control 171
 5.1 View Management .. 172
 5.1.1 Views in Centralized DBMSs 172
 5.1.2 Views in Distributed DBMSs 175
 5.1.3 Maintenance of Materialized Views 177
 5.2 Data Security .. 180
 5.2.1 Discretionary Access Control 181
 5.2.2 Multilevel Access Control 183
 5.2.3 Distributed Access Control 185
 5.3 Semantic Integrity Control 187
 5.3.1 Centralized Semantic Integrity Control 189
 5.3.2 Distributed Semantic Integrity Control 194
 5.4 Conclusion ... 200
 5.5 Bibliographic Notes 201

6 Overview of Query Processing 205
 6.1 Query Processing Problem 206
 6.2 Objectives of Query Processing 209
 6.3 Complexity of Relational Algebra Operations 210
 6.4 Characterization of Query Processors 211
 6.4.1 Languages .. 212
 6.4.2 Types of Optimization 212
 6.4.3 Optimization Timing 213
 6.4.4 Statistics ... 213
 6.4.5 Decision Sites .. 214
 6.4.6 Exploitation of the Network Topology 214
 6.4.7 Exploitation of Replicated Fragments 215
 6.4.8 Use of Semijoins 215
 6.5 Layers of Query Processing 215
 6.5.1 Query Decomposition 216
 6.5.2 Data Localization 217
 6.5.3 Global Query Optimization 218
 6.5.4 Distributed Query Execution 219
 6.6 Conclusion ... 219
 6.7 Bibliographic Notes 220
7 Query Decomposition and Data Localization ... 221
 7.1 Query Decomposition ... 222
 7.1.1 Normalization .. 222
 7.1.2 Analysis .. 223
 7.1.3 Elimination of Redundancy .. 226
 7.1.4 Rewriting .. 227
 7.2 Localization of Distributed Data ... 231
 7.2.1 Reduction for Primary Horizontal Fragmentation 232
 7.2.2 Reduction for Vertical Fragmentation 235
 7.2.3 Reduction for Derived Fragmentation 237
 7.2.4 Reduction for Hybrid Fragmentation 238
 7.3 Conclusion .. 241
 7.4 Bibliographic NOTES ... 241

8 Optimization of Distributed Queries ... 245
 8.1 Query Optimization .. 246
 8.1.1 Search Space ... 246
 8.1.2 Search Strategy .. 248
 8.1.3 Distributed Cost Model ... 249
 8.2 Centralized Query Optimization .. 257
 8.2.1 Dynamic Query Optimization ... 257
 8.2.2 Static Query Optimization .. 261
 8.2.3 Hybrid Query Optimization .. 265
 8.3 Join Ordering in Distributed Queries ... 267
 8.3.1 Join Ordering .. 267
 8.3.2 Semijoin Based Algorithms ... 269
 8.3.3 Join versus Semijoin ... 272
 8.4 Distributed Query Optimization .. 273
 8.4.1 Dynamic Approach ... 274
 8.4.2 Static Approach .. 277
 8.4.3 Semijoin-based Approach .. 281
 8.4.4 Hybrid Approach ... 286
 8.5 Conclusion .. 290
 8.6 Bibliographic Notes ... 292

9 Multidatabase Query Processing .. 297
 9.1 Issues in Multidatabase Query Processing 298
 9.2 Multidatabase Query Processing Architecture 299
 9.3 Query Rewriting Using Views .. 301
 9.3.1 Datalog Terminology ... 301
 9.3.2 Rewriting in GAV ... 302
 9.3.3 Rewriting in LAV .. 304
 9.4 Query Optimization and Execution .. 307
 9.4.1 Heterogeneous Cost Modeling ... 307
 9.4.2 Heterogeneous Query Optimization 314
12 Distributed DBMS Reliability .. 405
 12.1 Reliability Concepts and Measures 406
 12.1.1 System, State, and Failure 406
 12.1.2 Reliability and Availability 408
 12.1.3 Mean Time between Failures/Mean Time to Repair 409
 12.2 Failures in Distributed DBMS 410
 12.2.1 Transaction Failures .. 411
 12.2.2 Site (System) Failures 411
 12.2.3 Media Failures ... 412
 12.2.4 Communication Failures 412
 12.3 Local Reliability Protocols 413
 12.3.1 Architectural Considerations 413
 12.3.2 Recovery Information 416
 12.3.3 Execution of LRM Commands 420
 12.3.4 Checkpointing ... 425
 12.3.5 Handling Media Failures 426
 12.4 Distributed Reliability Protocols 427
 12.4.1 Components of Distributed Reliability Protocols 428
 12.4.2 Two-Phase Commit Protocol 428
 12.4.3 Variations of 2PC .. 434
 12.5 Dealing with Site Failures 436
 12.5.1 Termination and Recovery Protocols for 2PC 437
 12.5.2 Three-Phase Commit Protocol 443
 12.6 Network Partitioning ... 448
 12.6.1 Centralized Protocols 450
 12.6.2 Voting-based Protocols 450
 12.7 Architectural Considerations 453
 12.8 Conclusion .. 454
 12.9 Bibliographic Notes .. 455

13 Data Replication ... 459
 13.1 Consistency of Replicated Databases 461
 13.1.1 Mutual Consistency ... 461
 13.1.2 Mutual Consistency versus Transaction Consistency 463
 13.2 Update Management Strategies 465
 13.2.1 Eager Update Propagation 465
 13.2.2 Lazy Update Propagation 466
 13.2.3 Centralized Techniques 466
 13.2.4 Distributed Techniques 467
 13.3 Replication Protocols ... 468
 13.3.1 Eager Centralized Protocols 468
 13.3.2 Eager Distributed Protocols 474
 13.3.3 Lazy Centralized Protocols 475
 13.3.4 Lazy Distributed Protocols 480
 13.4 Group Communication .. 482
13.5 Replication and Failures .. 485
 13.5.1 Failures and Lazy Replication 485
 13.5.2 Failures and Eager Replication 486
13.6 Replication Mediator Service 489
13.7 Conclusion ... 491
13.8 Bibliographic Notes .. 493

14 Parallel Database Systems ... 497
 14.1 Parallel Database System Architectures 498
 14.1.1 Objectives .. 498
 14.1.2 Functional Architecture 501
 14.1.3 Parallel DBMS Architectures 502
 14.2 Parallel Data Placement ... 508
 14.3 Parallel Query Processing 512
 14.3.1 Query Parallelism ... 513
 14.3.2 Parallel Algorithms for Data Processing 515
 14.3.3 Parallel Query Optimization 521
 14.4 Load Balancing .. 525
 14.4.1 Parallel Execution Problems 525
 14.4.2 Intra-Operator Load Balancing 527
 14.4.3 Inter-Operator Load Balancing 529
 14.4.4 Intra-Query Load Balancing 530
 14.5 Database Clusters .. 534
 14.5.1 Database Cluster Architecture 535
 14.5.2 Replication .. 537
 14.5.3 Load Balancing .. 540
 14.5.4 Query Processing ... 542
 14.5.5 Fault-tolerance .. 545
 14.6 Conclusion ... 546
 14.7 Bibliographic Notes .. 547

15 Distributed Object Database Management 551
 15.1 Fundamental Object Concepts and Object Models 553
 15.1.1 Object .. 553
 15.1.2 Types and Classes .. 556
 15.1.3 Composition (Aggregation) 557
 15.1.4 Subclassing and Inheritance 558
 15.2 Object Distribution Design 560
 15.2.1 Horizontal Class Partitioning 561
 15.2.2 Vertical Class Partitioning 563
 15.2.3 Path Partitioning ... 563
 15.2.4 Class Partitioning Algorithms 564
 15.2.5 Allocation ... 565
 15.2.6 Replication .. 565
 15.3 Architectural Issues ... 566
15.3.1 Alternative Client/Server Architectures 567
15.3.2 Cache Consistency .. 572
15.4 Object Management ... 574
 15.4.1 Object Identifier Management .. 574
 15.4.2 Pointer Swizzling .. 576
 15.4.3 Object Migration ... 577
15.5 Distributed Object Storage .. 578
15.6 Object Query Processing .. 582
 15.6.1 Object Query Processor Architectures 583
 15.6.2 Query Processing Issues ... 584
 15.6.3 Query Execution ... 589
15.7 Transaction Management .. 593
 15.7.1 Correctness Criteria .. 594
 15.7.2 Transaction Models and Object Structures 596
 15.7.3 Transactions Management in Object DBMSs 596
 15.7.4 Transactions as Objects ... 605
15.8 Conclusion .. 606
15.9 Bibliographic Notes ... 607

16 Peer-to-Peer Data Management .. 611
16.1 Infrastructure .. 614
 16.1.1 Unstructured P2P Networks ... 615
 16.1.2 Structured P2P Networks .. 618
 16.1.3 Super-peer P2P Networks .. 622
 16.1.4 Comparison of P2P Networks .. 624
16.2 Schema Mapping in P2P Systems .. 624
 16.2.1 Pairwise Schema Mapping ... 625
 16.2.2 Mapping based on Machine Learning Techniques 626
 16.2.3 Common Agreement Mapping ... 626
 16.2.4 Schema Mapping using IR Techniques 627
16.3 Querying Over P2P Systems ... 628
 16.3.1 Top-k Queries .. 628
 16.3.2 Join Queries .. 640
 16.3.3 Range Queries .. 642
16.4 Replica Consistency .. 645
 16.4.1 Basic Support in DHTs .. 646
 16.4.2 Data Currency in DHTs ... 648
 16.4.3 Replica Reconciliation ... 649
16.5 Conclusion .. 653
16.6 Bibliographic Notes ... 653

17 Web Data Management ... 657
17.1 Web Graph Management ... 658
 17.1.1 Compressing Web Graphs ... 660
 17.1.2 Storing Web Graphs as S-Nodes ... 661
Contents

17.2 Web Search ... 663
 17.2.1 Web Crawling .. 664
 17.2.2 Indexing .. 667
 17.2.3 Ranking and Link Analysis 668
 17.2.4 Evaluation of Keyword Search 669

17.3 Web Querying .. 670
 17.3.1 Semistructured Data Approach 671
 17.3.2 Web Query Language Approach 676
 17.3.3 Question Answering 681
 17.3.4 Searching and Querying the Hidden Web 685

17.4 Distributed XML Processing 689
 17.4.1 Overview of XML 691
 17.4.2 XML Query Processing Techniques 699
 17.4.3 Fragmenting XML Data 703
 17.4.4 Optimizing Distributed XML Processing 710

17.5 Conclusion .. 718

17.6 Bibliographic Notes 719

18 Current Issues: Streaming Data and Cloud Computing 723
 18.1 Data Stream Management 723
 18.1.1 Stream Data Models 725
 18.1.2 Stream Query Languages 727
 18.1.3 Streaming Operators and their Implementation ... 732
 18.1.4 Query Processing 734
 18.1.5 DSMS Query Optimization 738
 18.1.6 Load Shedding and Approximation 739
 18.1.7 Multi-Query Optimization 740
 18.1.8 Stream Mining 741

18.2 Cloud Data Management 744
 18.2.1 Taxonomy of Clouds 745
 18.2.2 Grid Computing 748
 18.2.3 Cloud architectures 751
 18.2.4 Data management in the cloud 753

18.3 Conclusion .. 760

18.4 Bibliographic Notes 762

References .. 765

Index .. 833