AN INTRODUCTION TO

FLUID DYNAMICS

BY

G. K. BATCHelor, F.R.S.

Professor of Applied Mathematics in the University of Cambridge
CONTENTS

Preface
Conventions and Notation

Chapter 1. The Physical Properties of Fluids

1.1 Solids, liquids and gases
1.2 The continuum hypothesis
1.3 Volume forces and surface forces acting on a fluid
 - Representation of surface forces by the stress tensor, 9
 - The stress tensor in a fluid at rest, 12
1.4 Mechanical equilibrium of a fluid
 - A body ‘floating’ in fluid at rest, 16
 - Fluid at rest under gravity, 18
1.5 Classical thermodynamics
1.6 Transport phenomena
 - The linear relation between flux and the gradient of a scalar intensity, 30
 - The equations for diffusion and heat conduction in isotropic media at rest, 32
 - Molecular transport of momentum in a fluid, 36
1.7 The distinctive properties of gases
 - A perfect gas in equilibrium, 38
 - Departures from the perfect-gas laws, 45
 - Transport coefficients in a perfect gas, 47
 - Other manifestations of departure from equilibrium of a perfect gas, 50
1.8 The distinctive properties of liquids
 - Equilibrium properties, 55
 - Transport coefficients, 57
1.9 Conditions at a boundary between two media
 - Surface tension, 60
 - Equilibrium shape of a boundary between two stationary fluids, 63
 - Transition relations at a material boundary, 68

Chapter 2. Kinematics of the Flow Field

2.1 Specification of the flow field
 - Differentiation following the motion of the fluid, 72
2.2 Conservation of mass
 - Use of a stream function to satisfy the mass-conservation equation, 75
2.3 Analysis of the relative motion near a point
 - Simple shearing motion, 83
Contents

2.4 Expression for the velocity distribution with specified rate of expansion and vorticity

2.5 Singularities in the rate of expansion. Sources and sinks

2.6 The vorticity distribution
 - Line vortices, 93
 - Sheet vortices, 96

2.7 Velocity distributions with zero rate of expansion and zero vorticity
 - Conditions for $\nabla \phi$ to be determined uniquely, 102
 - Irrotational solenoidal flow near a stagnation point, 105
 - The complex potential for irrotational solenoidal flow in two dimensions, 106

2.8 Irrotational solenoidal flow in doubly-connected regions of space
 - Conditions for $\nabla \phi$ to be determined uniquely, 112

2.9 Three-dimensional flow fields extending to infinity
 - Asymptotic expressions for u_x and u_y, 114
 - The behaviour of ϕ at large distances, 117
 - Conditions for $\nabla \phi$ to be determined uniquely, 119
 - The expression of ϕ as a power series, 120
 - Irrotational solenoidal flow due to a rigid body in translational motion, 122

2.10 Two-dimensional flow fields extending to infinity
 - Irrotational solenoidal flow due to a rigid body in translational motion, 128

Chapter 3. Equations Governing the Motion of a Fluid

3.1 Material integrals in a moving fluid
 - Rates of change of material integrals, 133
 - Conservation laws for a fluid in motion, 135

3.2 The equation of motion
 - Use of the momentum equation in integral form, 138
 - Equation of motion relative to moving axes, 139

3.3 The expression for the stress tensor
 - Mechanical definition of pressure in a moving fluid, 141
 - The relation between deviatoric stress and rate-of-strain for a Newtonian fluid, 142
 - The Navier–Stokes equation, 147
 - Conditions on the velocity and stress at a material boundary, 148

3.4 Changes in the internal energy of a fluid in motion

3.5 Bernoulli's theorem for steady flow of a frictionless non-conducting fluid
 - Special forms of Bernoulli's theorem, 161
 - Constancy of H across a transition region in one-dimensional steady flow, 163

3.6 The complete set of equations governing fluid flow
 - Isentropic flow, 165
 - Conditions for the velocity distribution to be approximately solenoidal, 167

3.7 Concluding remarks to chapters 1, 2 and 3

Page 84

88

92

99

102

105

106

108

112

114

117

119

120

122

124

128

131

133

135

137

138

139

141

142

147

148

151

156

161

163

164

165

167

171
Chapter 4. Flow of a Uniform Incompressible Viscous Fluid

4.1 Introduction
Modification of the pressure to allow for the effect of the body force, 176

4.2 Steady unidirectional flow
- Poiseuille flow, 180
- Tubes of non-circular cross-section, 182
- Two-dimensional flow, 182
- A model of a paint-brush, 183
- A remark on stability, 185

4.3 Unsteady unidirectional flow
- The smoothing-out of a discontinuity in velocity at a plane, 187
- Plane boundary moved suddenly in a fluid at rest, 189
- One rigid boundary moved suddenly and one held stationary, 190
- Flow due to an oscillating plane boundary, 191
- Starting flow in a pipe, 193

4.4 The Ekman layer at a boundary in a rotating fluid
- The layer at a free surface, 197
- The layer at a rigid plane boundary, 199

4.5 Flow with circular streamlines

4.6 The steady jet from a point source of momentum

4.7 Dynamical similarity and the Reynolds number
- Other dimensionless parameters having dynamical significance, 215

4.8 Flow fields in which inertia forces are negligible
- Flow in slowly-varying channels, 217
- Lubrication theory, 219
- The Hele-Shaw cell, 222
- Percolation through porous media, 223
- Two-dimensional flow in a corner, 224
- Uniqueness and minimum dissipation theorems, 227

4.9 Flow due to a moving body at small Reynolds number
- A rigid sphere, 230
- A spherical drop of a different fluid, 235
- A body of arbitrary shape, 238

4.10 Oseen's improvement of the equation for flow due to moving bodies at small Reynolds number
- A rigid sphere, 241
- A rigid circular cylinder, 244

4.11 The viscosity of a dilute suspension of small particles
- The flow due to a sphere embedded in a pure straining motion, 248
- The increased rate of dissipation in an incompressible suspension, 250
- The effective expansion viscosity of a liquid containing gas bubbles, 253

4.12 Changes in the flow due to moving bodies as \(\text{Re} \) increases from 1 to about 100
Contents

Chapter 5. Flow at Large Reynolds Number: Effects of Viscosity

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>264</td>
</tr>
<tr>
<td>5.2 Vorticity dynamics</td>
<td>266</td>
</tr>
<tr>
<td>The intensification of vorticity by extension of vortex-lines, 270</td>
<td></td>
</tr>
<tr>
<td>5.3 Kelvin's circulation theorem and vorticity laws for an inviscid fluid</td>
<td>273</td>
</tr>
<tr>
<td>The persistence of irrotationality, 276</td>
<td></td>
</tr>
<tr>
<td>5.4 The source of vorticity in motions generated from rest</td>
<td>277</td>
</tr>
<tr>
<td>5.5 Steady flows in which vorticity generated at a solid surface is prevented by convection from diffusing far away from it</td>
<td>282</td>
</tr>
<tr>
<td>(a) Flow along plane and circular walls with suction through the wall, 282</td>
<td></td>
</tr>
<tr>
<td>(b) Flow toward a 'stagnation point' at a rigid boundary, 285</td>
<td></td>
</tr>
<tr>
<td>(c) Centrifugal flow due to a rotating disk, 290</td>
<td></td>
</tr>
<tr>
<td>5.6 Steady two-dimensional flow in a converging or diverging channel</td>
<td>294</td>
</tr>
<tr>
<td>Purely convergent flow, 297</td>
<td></td>
</tr>
<tr>
<td>Purely divergent flow, 298</td>
<td></td>
</tr>
<tr>
<td>Solutions showing both outflow and inflow, 301</td>
<td></td>
</tr>
<tr>
<td>5.7 Boundary layers</td>
<td>302</td>
</tr>
<tr>
<td>5.8 The boundary layer on a flat plate</td>
<td>308</td>
</tr>
<tr>
<td>5.9 The effects of acceleration and deceleration of the external stream</td>
<td>314</td>
</tr>
<tr>
<td>The similarity solution for an external stream velocity proportional to (x^n), 316</td>
<td></td>
</tr>
<tr>
<td>Calculation of the steady boundary layer on a body moving through fluid, 318</td>
<td></td>
</tr>
<tr>
<td>Growth of the boundary layer in initially irrotational flow, 321</td>
<td></td>
</tr>
<tr>
<td>5.10 Separation of the boundary layer</td>
<td>325</td>
</tr>
<tr>
<td>5.11 The flow due to bodies moving steadily through fluid</td>
<td>331</td>
</tr>
<tr>
<td>Flow without separation, 332</td>
<td></td>
</tr>
<tr>
<td>Flow with separation, 337</td>
<td></td>
</tr>
<tr>
<td>5.12 Jets, free shear layers and wakes</td>
<td>343</td>
</tr>
<tr>
<td>Narrow jets, 343</td>
<td></td>
</tr>
<tr>
<td>Free shear layers, 346</td>
<td></td>
</tr>
<tr>
<td>Wakes, 348</td>
<td></td>
</tr>
<tr>
<td>5.13 Oscillatory boundary layers</td>
<td>353</td>
</tr>
<tr>
<td>The damping force on an oscillating body, 355</td>
<td></td>
</tr>
<tr>
<td>Steady streaming due to an oscillatory boundary layer, 358</td>
<td></td>
</tr>
<tr>
<td>Applications of the theory of steady streaming, 361</td>
<td></td>
</tr>
</tbody>
</table>
Contents

5.14 Flow systems with a free surface

- The boundary layer at a free surface, 364
- The drag on a spherical gas bubble rising steadily through liquid, 367
- The attenuation of gravity waves, 370

5.15 Examples of use of the momentum theorem

- The force on a regular array of bodies in a stream, 372
- The effect of a sudden enlargement of a pipe, 373

Chapter 6. Irrotational Flow Theory and its Applications

6.1 The role of the theory of flow of an inviscid fluid

6.2 General properties of irrotational flow

- Integration of the equation of motion, 382
- Expressions for the kinetic energy in terms of surface integrals, 383
- Kelvin’s minimum energy theorem, 384
- Positions of a maximum of q and a minimum of p, 384
- Local variation of the velocity magnitude, 386

6.3 Steady flow: some applications of Bernoulli’s theorem and the momentum theorem

- Efflux from a circular orifice in an open vessel, 387
- Flow over a weir, 391
- Jet of liquid impinging on a plane wall, 392
- Irrotational flow which may be made steady by choice of rotating axes, 396

6.4 General features of irrotational flow due to a moving rigid body 398

- The velocity at large distances from the body, 399
- The kinetic energy of the fluid, 402
- The force on a body in translational motion, 404
- The acceleration reaction, 407
- The force on a body in accelerating fluid, 409

6.5 Use of the complex potential for irrotational flow in two dimensions

- Flow fields obtained by special choice of the function ω(z), 410
- Conformal transformation of the plane of flow, 413
- Transformation of a boundary into an infinite straight line, 418
- Transformation of a closed boundary into a circle, 420
- The circle theorem, 422

6.6 Two-dimensional irrotational flow due to a moving cylinder with circulation

- A circular cylinder, 424
- An elliptic cylinder in translational motion, 427
- The force and moment on a cylinder in steady translational motion, 433

6.7 Two-dimensional aerofoils

- The practical requirements of aerofoils, 435
- The generation of circulation round an aerofoil and the basis for Joukowski’s hypothesis, 438
- Aerofoils obtained by transformation of a circle, 441
- Joukowski aerofoils, 444
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Axisymmetric irrotational flow due to moving bodies</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Generalities</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>A moving sphere</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ellipsoids of revolution</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Body shapes obtained from source singularities on the axis of symmetry</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Semi-infinite bodies</td>
<td>460</td>
</tr>
<tr>
<td>6.9</td>
<td>Approximate results for slender bodies</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Slender bodies of revolution</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Slender bodies in two dimensions</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>Thin aerofoils in two dimensions</td>
<td>467</td>
</tr>
<tr>
<td>6.10</td>
<td>Impulsive motion of a fluid</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>Impact of a body on a free surface of liquid</td>
<td>473</td>
</tr>
<tr>
<td>6.11</td>
<td>Large gas bubbles in liquid</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>A spherical-cap bubble rising through liquid under gravity</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>A bubble rising in a vertical tube</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>A spherical expanding bubble</td>
<td>479</td>
</tr>
<tr>
<td>6.12</td>
<td>Cavitation in a liquid</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>Examples of cavity formation in steady flow</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Examples of cavity formation in unsteady flow</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Collapse of a transient cavity</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>Steady-state cavities</td>
<td>491</td>
</tr>
<tr>
<td>6.13</td>
<td>Free-streamline theory, and steady jets and cavities</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Jet emerging from an orifice in two dimensions</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Two-dimensional flow past a flat plate with a cavity at ambient pressure</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Steady-state cavities attached to bodies held in a stream of liquid</td>
<td>502</td>
</tr>
</tbody>
</table>

Chapter 7. Flow of Effectively Inviscid Fluid with Vorticity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>The self-induced movement of a line vortex</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>The instability of a sheet vortex</td>
<td>511</td>
</tr>
<tr>
<td>7.2</td>
<td>Flow in unbounded fluid at rest at infinity</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>The resultant force impulse required to generate the motion</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>The total kinetic energy of the fluid</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Flow with circular vortex-lines</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Vortex rings</td>
<td>522</td>
</tr>
<tr>
<td>7.3</td>
<td>Two-dimensional flow in unbounded fluid at rest at infinity</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>Integral invariants of the vorticity distribution</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>Motion of a group of point vortices</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>Steady motions</td>
<td>532</td>
</tr>
<tr>
<td>7.4</td>
<td>Steady two-dimensional flow with vorticity throughout the fluid</td>
<td>536</td>
</tr>
<tr>
<td></td>
<td>Uniform vorticity in a region bounded externally</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Fluid in rigid rotation at infinity</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>Fluid in simple shearing motion at infinity</td>
<td>541</td>
</tr>
</tbody>
</table>
7.5 Steady axisymmetric flow with swirl
The effect of a change of cross-section of a tube on a stream of rotating fluid, 546
The effect of a change of external velocity on an isolated vortex, 550

7.6 Flow systems rotating as a whole
The restoring effect of Coriolis forces, 555
Steady flow at small Rossby number, 557
Propagation of waves in a rotating fluid, 559
Flow due to a body moving along the axis of rotation, 564

7.7 Motion in a thin layer on a rotating sphere
Geostrophic flow, 571
Flow over uneven ground, 573
Planetary waves, 577

7.8 The vortex system of a wing
General features of the flow past lifting bodies in three dimensions, 580
Wings of large aspect ratio, and 'lifting-line' theory, 583
The trailing vortex system far downstream, 589
Highly swept wings, 591

Appendices

1 Measured values of some physical properties of common fluids 594
 (a) Dry air at a pressure of one atmosphere, 594
 (b) The Standard Atmosphere, 595
 (c) Pure water, 595
 (d) Diffusivities for momentum and heat at 15 °C and 1 atm, 597
 (e) Surface tension between two fluids, 597

2 Expressions for some common vector differential quantities in orthogonal curvilinear co-ordinate systems 598

Publications referred to in the text 604

Subject Index 609

Plates 1 to 24 are between pages 364 and 365
PREFACE

While teaching fluid dynamics to students preparing for the various Parts of the Mathematical Tripos at Cambridge I have found difficulty over the choice of textbooks to accompany the lectures. There appear to be many books intended for use by a student approaching fluid dynamics with a view to its application in various fields of engineering, but relatively few which cater for a student coming to the subject as an applied mathematician and none which in my view does so satisfactorily. The trouble is that the great strides made in our understanding of many aspects of fluid dynamics during the last 50 years or so have not yet been absorbed into the educational texts for students of applied mathematics. A teacher is therefore obliged to do without textbooks for large parts of his course, or to tailor his lectures to the existing books. This latter alternative tends to emphasize unduly the classical analytical aspects of the subject, and the mathematical theory of irrotational flow in particular, with the probable consequence that the students remain unaware of the vitally important physical aspects of fluid dynamics. Students, and teachers too, are apt to derive their ideas of the content of a subject from the topics treated in the textbooks they can lay hands on, and it is undesirable that so many of the books on fluid dynamics for applied mathematicians should be about problems which are mathematically solvable but not necessarily related to what happens in real fluids.

I have tried therefore to write a textbook which can be used by students of applied mathematics and which incorporates the physical understanding and information provided by past research. Despite its bulk this book is genuinely an introduction to fluid dynamics; that is to say, it assumes no previous knowledge of the subject and the material in it has been selected to introduce a reader to the important ideas and applications. The book has grown out of a number of courses of lectures, and very little of the material has not been tested in the lecture room. Some of the material is old and well known, some of it is relatively new; and for all of it I have tried to devise the presentation which appears to be best from a consistent point of view. The book has been prepared as a connected account, intended to be read and worked on as a whole, or at least in large portions, rather than to be referred to for particular problems or methods.

I have had the needs of second-, third- and fourth-year students of applied mathematics in British universities particularly in mind, these being the needs with which I am most familiar, although I hope that engineering students will also find the book useful. The true needs of applied mathe-
maticians and engineers are nowadays not far apart. Both require above all
an understanding of the fundamentals of fluid dynamics; and this can be
achieved without the use of advanced mathematical techniques. Anyone
who is familiar with vector analysis and the notation of tensors should have
little difficulty with the purely mathematical parts of this work. The book
is fairly heavily weighted with theory, but not with mathematics.

Attention is paid throughout the book to the correspondence between
observation and the various conceptual and analytical models of flow
systems. The photographs of flow systems that are included are an essential
part of the book, and will help the reader, I hope, to develop a sense of the
reality that lies behind the theoretical arguments and analysis. This is
particularly important for students who do not have an opportunity of seeing
flow phenomena in a laboratory. The various books and lectures by L.
Prandtl seem to me to show admirably the way to keep both theory and
observation continually in mind, and I have been greatly influenced by
them. Prandtl knew in particular the value of a clear photograph of a well-
designed experimental flow system, and many of the photographs taken by
him are still the best available illustrations of boundary-layer phenomena.

A word is necessary about the selection of topics in this book and the order
in which they have been placed. My original intention was to provide
between two covers an introduction to all the main branches of fluid
dynamics, but I soon found that this comprehensiveness was incompatible
with the degree of thoroughness that I also had in mind. I decided therefore
to attempt only a partial coverage, at any rate so far as this volume is con-
cerned. The first three chapters prepare the ground for a discussion of any
branch of fluid dynamics, and are concerned with the physical properties of
fluids, the kinematics of a flow field, and the dynamical equations in general
form. The purpose of these three introductory chapters is to show how the
various branches of fluid dynamics fit into the subject as a whole and rest
on certain idealizations or assumptions about the nature of the fluid or the
motion. A teacher is unlikely to wish to include all this preliminary material
in a course of lectures, but it can be adapted to suit a specialized course and
will I hope be useful as background. In the remaining four chapters the fluid
is assumed to be incompressible and to have uniform density and viscosity.
I regard flow of an incompressible viscous fluid as being at the centre of fluid
dynamics by virtue of its fundamental nature and its practical importance.
Fluids with unusual properties are fashionable in research, but most of the
basic dynamical ideas are revealed clearly in a study of rotational flow of a
fluid with internal friction; and for applications in geophysics, chemical
engineering, hydraulics, mechanical and aeronautical engineering, this
is still the key branch of fluid dynamics. I regret that many important
topics such as gas dynamics, surface waves, motion due to buoyancy forces,
turbulence, heat and mass transfer, and magneto-fluid dynamics, are
apparently ignored, but the subject is simply too large for proper treatment
in one volume. If the reception given to the present book suggests that a
second volume would be welcome, I may try later to make the coverage
more nearly complete.

As to the order of material in chapters 4 to 7, the description of motion of
a viscous fluid and of flow at large Reynolds number precedes the discussion
of irrotational flow (although the many purely kinematical properties of an
irrotational velocity distribution have a natural place in chapter 2) and of
motion of an inviscid fluid with vorticity. My reason for adopting this un-
conventional arrangement is not that I believe the 'classical' theory of irrota-
tional flow is less important than is commonly supposed. It is simply that
results concerning the flow of inviscid fluid can be applied realistically
only if the circumstances in which the approximation of zero viscosity is
valid are first made clear. The mathematical theory of irrotational flow is a
powerful weapon for the solution of problems, but in itself it gives no
information about whether the whole or a part of a given flow field at large
Reynolds number will be approximately irrotational. For that vital informa-
tion some understanding of the effects of viscosity of a real fluid and of
boundary-layer theory is essential; and, whereas the understanding was
lacking when Lamb wrote his classic treatise *Hydrodynamics*, it is available
today. I believe that the first book, at least in English, to show how so many
common flow systems could be understood in terms of boundary layers
and separation and vorticity movement was *Modern Developments in Fluid
Dynamics*, edited by Sydney Goldstein. That pioneering book published
in 1938 was aimed primarily at research workers, and I have tried to
take the further step of making the understanding of the flow of real
fluids accessible to students at an early stage of their study of fluid
dynamics.

Desirable though it is for study of the flow of viscous fluids to precede
consideration of an inviscid fluid and irrotational flow, I appreciate that
a lecturer may have his hand forced by the available lecturing time. In the
case of mathematics students who are to attend only one course on fluid
dynamics, of length under about 30 lectures, it would be foolish to embark
on a study of viscous fluid flow and boundary layers in preparation for a
description of inviscid-fluid flow and its applications, since too little time
would be left for this topic; the lecturer would need to compromise with
scientific logic, and could perhaps take his audience from chapters 2 and 3
to chapter 6, with some of the early sections of chapters 5 and 7 included.

It is a difficulty inherent in the teaching of fluid dynamics to mathematics undergraduates that a partial introduction to the subject is unsatisfactory, tending to leave them with analytical procedures and results but no information about when they are applicable. Furthermore, students do take some time to grasp the principles of fluid dynamics, and I suggest that 40 to 50 lectures are needed for an adequate introduction of the subject to non-specialist students. However, a book is not subject to the same limitations as a course of lectures. I hope lecturers will agree that it is desirable for students to be able to see all the material set out in logical order, and to be able to improve their own understanding of the subject by reading, even if in a course of lectures many important topics such as boundary-layer separation must be ignored.

Exercises are an important part of the process of understanding and mastering so analytical a subject as fluid dynamics, and the reading of this text should be accompanied by the working of illustrative exercises. I should have liked to be able to provide many suitable questions and exercises, but a search among those already published in various places did not produce many in keeping with the approach adopted in this book. Moreover, the published exercises are concentrated on a small number of topics. The lengthy task of devising and compiling suitable exercises over the whole field of ‘modern’ fluid dynamics has yet to be undertaken. Consequently only a few exercises will be found at the end of sections. To some extent exercises ought to be chosen to suit the particular background and level of the class for which they are intended, and it may be that a lecturer can turn into exercises for his class many portions of the text not included explicitly in his course of lectures, as I have done in my own teaching.

It is equally important that a course of lectures on the subject matter of this book should be accompanied by demonstrations of fluid flow. Here the assistance of colleagues in a department of engineering may be needed. The many films on fluid dynamics that are now available are particularly valuable for classes of applied mathematicians who do not undertake any laboratory work. By one means or another, a teacher should show the relation between his analysis and the behaviour of real fluids; fluid dynamics is much less interesting if it is treated largely as an exercise in mathematics.

I am indebted to a large number of people for their assistance in the preparation of this book. Many colleagues kindly provided valuable comments on portions of the manuscript, and enabled me to see things more clearly. I am especially grateful to Philip Chatwin, John Elder, Emin
Erdogan, Ken Freeman, Michael McIntyre, Keith Moffatt, John Thomas
and Ian Wood who helped with the heavy task of checking everything in
the proof. My thanks go also to those who supplied me with diagrams
or photographs or who permitted reproduction from an earlier publica-
tion; to Miss Pamela Baker and Miss Anne Powell, who did the endless
typing with patience and skill; and to the officers of Cambridge University
Press, with whom it is a pleasure to work.

G. K. B.

Cambridge
April 1967
CONVENTIONS AND NOTATION

Bold type signifies vector character.

\(\mathbf{x}, \mathbf{x}' \) position vectors; \(|\mathbf{x}| = r \)

\(\mathbf{s} = \mathbf{x} - \mathbf{x}' \) relative position vector

\(\mathbf{u} \) velocity at a specified time and position in space; \(|\mathbf{u}| = q \)

\(\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \) operator giving the material derivative, or rate of change at a point moving with the fluid locally; applies only to functions of \(\mathbf{x} \) and \(t \)

<table>
<thead>
<tr>
<th>System</th>
<th>Co-ordinates</th>
<th>Velocity components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectilinear</td>
<td>(x, y, z) or (x_1, x_2, x_3)</td>
<td>(u, v, w) or (u_1, u_2, u_3)</td>
</tr>
<tr>
<td>Polar, two dimensions</td>
<td>(r, \theta)</td>
<td>(u, v) or (u_r, u_\theta)</td>
</tr>
<tr>
<td>Spherical polar</td>
<td>(r, \theta, \phi)</td>
<td>(u, v) or (u_r, u_\theta, u_\phi)</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>(x, \sigma, \phi) ((\sigma^2 = y^2 + z^2))</td>
<td>(u, v) or (u_x, u_\sigma, u_\phi)</td>
</tr>
</tbody>
</table>

\(\Delta = \nabla \cdot \mathbf{u} \) rate of expansion (fractional rate of change of volume of a material element)

\(\omega = \nabla \times \mathbf{u} \) vorticity (twice the local angular velocity of the fluid)

\(\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right) \) rate-of-strain tensor

\(\phi \) scalar potential of an irrotational velocity distribution (\(\mathbf{u} = \nabla \phi \))

\(\mathbf{B} \) vector potential of a solenoidal velocity distribution (\(\mathbf{u} = \nabla \times \mathbf{B} \))

\(\psi \) stream function for a solenoidal velocity distribution;

(a) two-dimensional flow: \(\mathbf{B} = (\sigma, \phi, \psi) \)

\[
\begin{align*}
\mathbf{u} = \frac{\partial \psi}{\partial y}, & \quad \mathbf{v} = -\frac{\partial \psi}{\partial x} \quad \text{or} \quad u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u_\theta = -\frac{1}{r} \frac{\partial \psi}{\partial r} \\
\end{align*}
\]

(b) axisymmetric flow:

\[
\begin{align*}
\text{cylindrical co-ordinates } & \quad B_\phi = \frac{\psi}{\sigma}, \quad u_x = \frac{1}{r} \frac{\partial \psi}{\partial \sigma}, \quad u_\sigma = -\frac{1}{r} \frac{\partial \psi}{\partial x} \\\
\text{polar co-ordinates } & \quad B_\phi = \frac{\psi}{r \sin \theta}, \quad u_r = \frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta}, \quad u_\theta = -\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \\\
\end{align*}
\]

\(\mathbf{n} \) unit normal to a surface, usually outward if the surface is closed

\(\delta V, \mathbf{n} \delta A, \delta x \) volume, surface and line elements with a specified position in space

\(\delta r, \mathbf{n} \delta S, \delta l \) material volume, surface and line elements

\(\sigma_{ij} \) stress tensor; \(\sigma_{ij} n_i \delta A \) is the \(i \)-component of the force exerted across the surface element \(\mathbf{n} \delta A \) by the fluid on the side to which \(\mathbf{n} \) points

\(\mathbf{F} = -\nabla \Psi \) conservative body force per unit mass

Inertia force (per unit mass) minus the local acceleration

Vortex-line: line whose tangent is parallel to \(\omega \) locally

Line vortex: singular line in vorticity distribution round which the circulation is non-zero

Books which may provide collateral reading are cited in detail in the text, usually in footnotes. A comparatively small number of original papers are also referred to, sometimes for historical interest, sometimes because a precise acknowledgment is appropriate, and sometimes, although only rarely, as a guide to further reading on a particular topic. These papers are cited in the text as 'Smith (1950)', and the full references for both papers and books are listed at the end of the book.